Like many of us, [Emily’s Electric Oddities] has had a lot of time for projects over the past year or so, including one that had been kicking around since late 2018. It all started at the Hackaday Superconference, when [Emily] encountered the Adafruit Hallowing board in the swag bag. Since that time, [Emily] has wanted to display the example code eyeball movement on a CRT, but didn’t really know how to go about it. Spoiler alert: it works now.

See? It’s educational.

Eventually, [Emily] learned about the TV out library for Arduino and got everything working properly — the eyeball would move around with the joystick, blink when the button is pressed, and the pupil would respond visually to changes in ambient light. The only problem was that the animation moved at a lousy four frames per second. Well, until she got Hackaday’s own [Roger Cheng] involved.

[Roger] was able to streamline the code to align with [Emily]’s dreams, and then it was on to our favorite part of this build — the cabinet design. Since the TV out library is limited to black and white output without shades of gray, Emily took design cues from the late 70s/early 80s, particularly the yellow and wood of the classic PONG cabinet. We love it!

Is Your Pet Eye the worst video game ever, as [Emily] proclaims it to be? Not a chance, and we’re pretty sure that the title still rests with Desert Bus, anyway. Even though the game only lasts until the eye gets tired and goes to sleep, it’s way more fun than Your Pet Rock. Don’t miss the infomercial/explanation/demonstration video after the break. If one video is just not enough, learn more about [Emily’s] philosophy of building weird projects from the Supercon talk she presented. It’s also worth mentioning that this one fits right into the Reinvented Retro contest.

Why are eyeballs so compelling? We can’t say for sure, but boy, this eyeball web cam sure is disconcerting.

Continue reading “[Emily]’s Eerie Educational Electric Eyeball Entertains”

We don’t typically use gasoline engines smaller than 50 cc or so on a regular basis. Below that size, electric motors are typically less messy and more capable of doing the job. That doesn’t mean they aren’t cute, however. [JohnnyQ90] is a fan of tiny internal combustion engines, and decided to whip up a little water pump for one of his so it could do something useful besides make noise.

The pump is built out of billet aluminium, showing off [JohnnyQ90]’s machining skills. The two pieces that make up the main body and cover plate of the pump are impressive enough, but the real party piece is the tiny delicate impeller which actually does the majority of the work. The delicate curves of the pump blades are carefully carved out and look exquisite when finished.

The pump’s performance is adequate, and the noise of the tiny gasoline engine makes quite a racket, but it’s a great display of machining skill. If so desired, the pump could also do a great job for a small liquid delivery system if hooked up to a quiet electric motor, too. The aluminium design has the benefit of being relatively leak free when assembled properly, something a lot of 3D printed designs struggle to accomplish.

We’ve seen [JohnnyQ90]’s micro engine experiments before, too — like this small generator build. Video after the break.

Continue reading “Tiny Gasoline Engine Fitted With A Custom Billet Waterpump”

Back when it first happened, we covered the Oroville Dam near-disaster. Heavier-than-expected rainfall in California back in early 2017 led to running the dam’s primary spillway at much higher-than-normal levels. February 17, 2017, the operators noticed something odd about the water flow down the spillway, and when they turned off water flowing down the spillway, it was made obvious that they had a major problem on their hands. Several chunks of concrete were missing, and the water had begun gouging into the earth beneath the spillway. It would need repairs before it was properly up to the task of discharging water, but it was still raining.

The rising water level in Lake Oroville put operators in a tricky situation, as they needed to discharge water in the least damaging way possible. They decided to use the emergency spillway to keep water levels at safe levels. Unfortunately, the secondary spillway began to deteriorate even more quickly than the primary had, and continued use could compromise the structure of the entire dam. The difficult decision was made to evacuate downstream residents, and sacrifice the primary spillway to drain the lake to 50 feet below the nominal full level. It worked, and effectively destroyed the bottom two-thirds of the spillway over those 3 months.

With the water at a safe level, the spillways could be repaired, a monumental nearly-2-year process in itself. We’ve covered all this before, but you may be left with the nagging question, what went wrong? [Grady Hillhouse], of the Practical Engineering channel, breaks it down for us in the video embedded below.

Continue reading “A Look Back On The Oroville Dam With Practical Engineering”

Let’s be honest — not too many of us have a need to deposit nanometer-thick films onto substrates in a controlled manner. But if you do find yourself in such a situation, you could do worse than following [Jeroen Vleggaar]’s lead as he builds out a physical vapor deposition apparatus to do just that.

Thankfully, [Jeroen] has particular expertise in this area, and is willing to share it. PVD is used to apply an exceedingly thin layer of metal or organic material to a substrate — think lens coatings or mirror silvering, as well as semiconductor manufacturing. The method involves heating the coating material in a vacuum such that it vaporizes and accumulates on a substrate in a controlled fashion. Sounds simple, but the equipment and know-how needed to actually accomplish it are daunting. [Jeroen]’s shopping list included high-current power supplies to heat the coating material, turbomolecular pumps to evacuate the coating chamber, and instruments to monitor the conditions inside the chamber. Most of the chamber itself was homemade, a gutsy move for a novice TIG welder. Highlights from the build are in the video below, which also shows the PVD setup coating a glass disc with a thin layer of silver.

This build is chock full of nice details; we especially liked the technique of monitoring deposition progress by measuring the frequency change of an oscillator connected to a crystal inside the chamber as it accumulates costing material. We’re not sure where [Jeroen] is going with this, but we suspect it has something to do with some hints he dropped while talking about his experiments with optical logic gates. We’re looking forward to seeing if that’s true.

Continue reading “Thin Coatings Require An Impressive Collection Of Equipment And Know-How”

For a satisfying Youtube watching session there is noting like some quality machine shop work, and that’s exactly what [Made In Poland] supply with their conversion of a small 12V winch to power from a chainsaw. The finished product contains not much more than the gearbox and shaft components from the original, but the mesmerising sight of rusty steel stock being transformed into dimension-perfect components which come together to form an entirely new assembly is as always a draw.

The conversion starts with the removal and disassembly of the motor to reveal its shaft and the locking mechanism for the drum. The shaft is then turned down and a collar manufactured to couple it to the drive spline on a chainsaw. We’re pleased to see that the chainsaw isn’t modified in this build, instead the blade is simply unscrewed and the winch attached in a reversible process. Finally, the original drum is deemed too small for the application, so a new drum is fabricated. We see the result on a Polish farm, happily participating in some forestry work and even pulling their pickup truck when it became stuck.

This is by no means the first time we’ve featured [Mad in Poland] in these pages, not least with this electromagnetic circle cutting jig.

Continue reading “A Chainsaw Gives This Winch Some Grunt”