At Hackaday, we celebrate all kinds of projects, but we’ll have to admit that the polished and professional-looking builds tend to catch our eye a lot more than perhaps they should. There’s plenty of love to be had for the rougher builds, though, of which this quick-and-dirty home automation system is a perfect example.

Before anyone rushes to state the obvious with, “Should have used some relays,” consider that [MAKE_IT_WITH_ME]’s stated goal was to get the basics of a home automation system built with pretty much nothing but what can be found in one of those Arduino starter kits. And further, consider that landlords might not look kindly on tenants who wire a bunch of SSRs or Sonoff switches into the walls of their building. So this minimalist build is perfect for certain use cases. Its interface to the building’s electrical system is 100% mechanical, via a servo that travels along the bank of switches on a stepper-driven leadscrew. The servo has a modified horn to properly flick the rocker-style switches, and although changing from switch to switch is a bit slow, it works surprisingly well. The video below shows it in action.

While we can see it possibly working as-is for Decora-style switches that are seen in some markets, we’d think some mods would be in order for the more standard toggle-style switch — perhaps a finger extending out from the horn, along with a second servo to tilt the whole assembly away from the wall to allow it to clear the switch bats.

Continue reading “Home Automation For Fans Of Quick-and-Dirty Solutions”

You don’t think of hobby-grade 3D printing as a good method for creating rocket nozzles. But [Mister Highball] managed to create a copper nozzle using a common printer, a kiln, and some special copper-bearing filament.

The copper filament is about 90% metal. Virtual Foundry recommends preheating it before printing and you have to sinter it in an oven to remove the plastic and leave a solid metal piece which will, of course, shrink.

Continue reading “3D Printed Copper Rocket Nozzle Costs Under Two Grand”

A regular car horn is fine, but lacks finesse for more subtle communication. For example, some car horns aren’t particularly adept at short indicatory honks, and can only blare loudly regardless of the situation. For a fancier solution, [Tom Hammond] whipped up a custom car horn capable of playing a wide variety of sounds.

The system uses the Adafruit Audio FX board. This is a unique part, which is designed to enable people to build sound-based projects without the need for a microcontroller or any other similar hardware. Instead, the device can be connected to a computer over USB in mass storage mode, and its 16MB in-built memory can be loaded with sound files. It then plays these when buttons are pressed, hooked up to its 11 trigger inputs.

The Audio FX board has its output hooked up to a 120W amplifier, which then feeds into a pair of 15W PA-style horns. These are incredibly loud devices, though lack bass, so they’re really only good for throwing low-quality sound out in a noisy environment. For a car horn, that’s perfect.

The result is that [Tom] can press a number of buttons on his dash to play different sounds, from courtesy honks to animal noises and obnoxious sound effects. The great thing is that the sounds in question can be easily customized to the user’s tastes. [Tom] also deserves a tip of the hat for explaining in great detail how to actually install the project in the average car.

We don’t often see car horns around these parts, though they do make for an awfully loud alarm clock. If you’ve got your own nifty car accessories that you’re cooking up, be sure to drop us a line!

Sometimes, walking even a short distance can grow boring if it’s a part of your regular routine. [Alexandre Chappel] found himself in just such a position, so elected to quickly whip up a scooter to get around on.

The build is very much of the “parts laying around the shop” genre. An old skateboard deck was fitted with nice rubber scooter wheels and a set of handlebars thanks to a series of 3D printed parts. Unfortunately, the first revision had problems with flex in the skateboard deck, which isn’t designed to take the full weight of an adult human standing on one leg. Another skateboard deck was pressed into service, reinforced with a metal pipe for added strength.

From there, [Alexandre] set about creating a front-wheel-drive system using a power drill, several shaft extensions, and a right-angle drive. Clamped to the handlebar tube, the drill’s trigger is controlled via a twist throttle linked up by a string.

It’s not the easiest scooter to ride, with a bit too much torque from a standing start and somewhat scary handling characteristics at times. However, we’re sure with some practice and some tweaks, [Alexandre] will have a useful ride on his hands. If you prefer something wilder, however, consider this walking scooter build. Video after the break.

Continue reading “3D Printed Parts Make For A Quick Electric Scooter Build”

Handling tiny surface mount components and inspecting PCBs is a lot easier with a nice stereo microscope, but because of their cost and bulk, most hobbyists have to do without. At best they might have a basic digital microscope, but with only one camera, they can only show a 2D image that’s not ideal for detail work.

The team behind [Stereo Ninja] hopes to improve on the situation by developing a stereoscopic vision system that puts tiny objects up on the big screen in three dimensions. Utilizing the Raspberry Pi Compute Module, a custom carrier board that enables the use of both MIPI CSI camera interfaces, and a 3D gaming monitor, their creation combines the capabilities of a traditional stereo microscope with the flexibility of a digital solution.

With two Raspberry Pi cameras suspended over the work area, and the addition of plenty of LED light, Stereo Ninja is able to generate the 3D image required by the monitor. While the camera’s don’t have the same magnification you’d get from a microscope, they’re good enough for enlarging SMD parts, and looking at a big screen monitor certainly beats hunching over the eyepiece of a traditional microscope. Especially if you’re trying to show something to a group of people, like at a hackerspace.

Of course, not everyone has a large 3D gaming monitor on their workbench. In fact, given how poorly the tech went over with consumers the last time it was pushed on us, we’d wager more hackers have stereo microscopes than 3D displays. Which is why the team’s next step is to have the Raspberry Pi generate the signals required by the shutter glasses, allowing Stereo Ninja to show a three dimensional image on 2D monitors; bringing this valuable capability to far larger audience than has previously been possible.

Continue reading “Raspberry Pi Cameras Stand In For Stereo Microscope”

Even as we bask in the knowledge that our neighboring planet Mars is currently home to a multitude of still functional landers, a triplet of rovers and with an ever-growing satellite network as well as the first ever flying drone on another planet, our other neighboring planet Venus is truly playing the wallflower, with Japan’s Akatsuki orbiter as the lone active Venusian mission right now.

That is about to change, however, with NASA having selected two new missions that will explore Venus by the end of this decade. The DAVINCI+ and VERITAS missions aim to respectively characterize Venus’ atmosphere and map its surface in unprecedented detail. This should provide us information about possible tectonic activity, as well as details about the Venusian atmosphere which so far have been sorely missing.

Despite Venus being the closest match to our planet Earth, how is it possible that we have been neglecting it for so long, and what can we expect from future missions, including and beyond these two new NASA missions?

Continue reading “Checking Up On Earth’s Sister Planet: NASA’s Upcoming Venus Missions”

Hackaday editors Elliot Williams and Mike Szczys dive into a week of exceptional hacks. Tip-top of the list has to be the precision measuring instrument that uses a cable spooling mechanism. There’s news that the Starlink base station firmware has been dumped and includes interesting things like geofencing for the developer modes. We saw a garage robot that will plug in your electric vehicle if you’re the forgetful sort. And we close up by talking about heavier-than-air helium airships and China’s Mars rover.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (55 MB or so.)

Places to follow Hackaday podcasts:

  • Google Podcasts
  • iTunes
  • Spotify
  • Stitcher
  • RSS

Continue reading “Hackaday Podcast 126: Cable 3D-Scanner, Tesla Charger Robot, Ultrasonic Anemometer, And A Zoetrope”